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1. Summary 

Balanced repeated replications (BRR) is a 

general method for computing standard errors. It 

has wide utility when specific mathematical 
methods are lacking, and especially for analyt- 
ical statistics based on complex samples, where 
clustering destroys the independence of observ- 
ations. We present results of methods we used 
since 1957 to measure standard errors of regres- 
sion coefficients for several multivariate 
techniques. The basic design of the several 
samples comprised two primary selections (PS) 

per stratum. 
Each replication was a half -sample, created 

by selecting one PS per stratum. The variance 
of the estimated coefficient is measured by 
(b -b *)2 where bj is the same estimator based on 
a fialf- sample. To increase the precision of the 
variance, we select repeated replications and 
compute the mean of the variance, E(bj- b *)2 /J. 
Balanced repeated replications reduce the number 
of repetitions needed. We obtained practically 
all available precision from 47 strata with 
48 BRR. Though proofs are complete only for 
linear statistics, we offer rationale and results 
to indicate that BRR provides needed estimates of 
errors for non -linear statistics. 

The ratios aliTY of actual to srs standard 
errors are investigated for several statistics 
in 5 sets of empirical studies. In each study 
average values of exceed 1.00, and range 
from 1.05 for widespread samples to 1.35 to more 
clustered samples. 

2. Analytical statistics from complex samples 

The development of standard statistical lit- 
erature has been based on the assumption of 
samples of independent observations, which great- 
ly facilitates obtaining interesting theoretical 
results. On the other hand this assumption of 
unrestricted random sampling is violated by the 
designs of most survey samples. Practical, 
economic designs often use clusters of sample 
elements, which induce strong correlations among 
them. These correlations have serious effects on 
statistics based on complex samples. They also 
pose formidable theoretical obstacles. It would 
be difficult to unravel the effects of some com- 
plex designs on the distribution of even one 
specific analytical statistic; it is even less 
reasonable to expect separate derivations for 
each statistic for all major designs. Hence, we 
need badly general methods for getting around 
those obstacles. 

To clarify our discussion, we may think 
specifically of the coefficients of multiple 
linear regression which can typify the broader 
class of analytical statistics we need to 
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estimate. The derivations of their distributions 

imply independence of observations (not of the 

variables); specific proofs of asymptotic 

theories, as well as laws of large numbers and 
central limit theorems, generally also assume 

independence. Yet we do conjecture that regres- 

sion coefficients (and other statistics) based on 

large complex samples also tend in probability to 

approach the corresponding parameters; and that 

the approach is merely slowed by the correlation 

between elements of the same clusters. We are 

not alone in acting on such conjectures, and on 

the belief that proofs will come [Kish 1965, 2.8C; 

Tharakan, 1968]. After all, researchers have 

used data from complex samples to compute regres- 

sion coefficients and other analytical statistics. 

However, we should not expect that variances 

for regression coefficients, or other statistics, 

based on assumptions of independence will be 

valid. Rather we should expect that these will 

tend to underestimate the variance, as they have 

been shown to do for means and differences of 

means. We may view differences between means as 

the simplest form of analytical statistics, and 

we had abundant evidence about the design effects 

on their standard errors. We used these results 

as bases for conjectures about effects on other 

analytical statistics [Kish 1957; Kish 1965, 14.31 

These conjectures are born out by the results of 

the investigations here presented. 

What alternatives have we? Research and 

researchers need analytical statistics, and can- 

not wait for the possible development of the 
extremely complex distribution theory necessary 

for complex samples. On the contrary, it is 

often impractical to use unrestricted random 

samples to conform to the distribution theory 

available for analytical statistics [Kish 1957, 

and 1965, 14.2]. Simple interpenetrating 

samples often will not serve because of the con- 

flict they raise between desired stratification 

and adequate degrees of freedom [Jones 1956, 

Kish 1965, 4.4]. 
Many samples are highly stratified, with 

clustered selections from the strata. A model 
of two independent primary selections from each 

stratum is probably the most basic design that 

conforms adequately, if not perfectly, the 

actual design of many actual survey samples. Our 

investigations and our discussion are based on 

that model, and on balanced repeated replications 

(BRR) for obtaining estimates of standard errors, 

described next. 
Before passing on to it we should mention a 

possible alternative in extensions of Taylor 

approximations, sometimes called "propagation of 

variances" or the "delta method." Tepping [1968] 

has recently called attention to its possibilities 

in complex samples, as have Deming [1960, 390 ff] 

and Kish [1965, 585]; it was used for standard 

errors of double ratios and index numbers [Kish 

1968]. Note also a recent theoretical invest- 

igation [Brillinger and Tukey, 1964]. We reserve 

judgment until we see how useful, general, 



'practical and robust it will be proven on data. 
Meanwhile, we suspect that BRR will fare better 
in most situations involving complex analytical 
statistics such as regression coefficients. 

3. Balanced repeated replications 

We propose this descriptive name for a 
method we used in a series of investigations 
since 1957, but especially since 1964. The 
method may be summarised in a few steps. 
A. A replication (half- sample) is created by 

selecting at random one of the two primary 
selections (replicates) from each stratum. 
The replication reproduces accurately the 
complex design of the entire sample. From the 
j 
th 

replication the desired statistics 
(bij) are computed. For example, compute 

the regression y bljxi + b2jx2 + 
b3jx3 

from the replication with the same estim- 
ation proces -used to compute 
y + b2x2 + b x3 from the entire 

sample. Then (blj -b1)2 estimates the 

variance the statistic computed from 

the entire sample. The variances of b2 
and b3 are similarly estimated by 

(b2j412)2 and (bij 

Instead of b1) we can use 

bij) /2, half of the difference between 

the selected replication and its c..,.lement- 
ary half -sample. The estimate (blj -.1) is 

cheaper to compute, and our research shows 
small differences between results with the 
two methods. (See section 10). 

B. Repeated replications are needed, because 
the estimates from (A), based on a single 
replication and a single degree of freedom, 
are extremely variable; almost uselessly so 
in most cases. But we can repeat the process 
(A) by drawing new replications to obtain 
new estimates and (blj b1)2. From 

repetitions we compute the average of the k 
variance estimates E(blj4 1)2/k. Because 

each of the values is an estimate of the 
variance, so is their mean value. The 

precision of this average increases with the 
number of repetitions, but only slowly if 
the repeated replications are selected at 
random, without any connecting design. From 
H strata, full precision can be obtained from 
the 2H 1 possible ways of forming half- 
samples. 

C. Balanced repeated replications reduce drast- 
ically the number of repetitions needed. 

For example, most of the precision from our 
47 strata can be obtained from 48 balanced 
repetitions. This can be managed on large 
computers in many situations. The precision 
it yields is moderately adequate for usual 
needs: the coefficient of variation of the 
standard error is about /, or about 
0.10. 
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D. However, a coefficient of variation of 10 
percent is rather high when we want to dis- 
tinguish design effects as low as 1.05 or 
1.10 from 1.00. Hence we prefer to search 
for stability by investigating averages 
based on groups of statistics. A useful 
and common technique is to compute design 
effects, or deff [Kish, 1965, 812], the 
ratio of actual complex variances to their 
simple random variances. We have been 
averaging the values of the ratios of 
the standard errors, because these are less 
subject to extreme values. The differences 
between the average of deff and are 
not great in our practice, and the theoret- 
ical grounds for preferring one or the other 
not clear to us. 

In computing, tabulating and accumul- 

ating design effects we have four aims: to 
check and improve the specific estimates of 
standard errors when these are highly vari- 
able; to estimate standard errors when only 
their simple random estimates are available; 
to appraise and understand sources of 
sampling variations; and to design better 
samples. We present later the results of 
our empirical investigations largely in 
terms of effects deff, because these are 
more meaningful to the reader than a set of 
specific standard errors would be. 

Simple random variances of most stat- 
istics can often be computed cheaply, based 
on analytical formulas already built into 
standard computing programs and on the entire 
sample; they are usually subject to much 
smaller sampling variations than are the 
actual variances computed with BRR. When 
analytical variances are not available, 
simple random variances can be computed also 
from simple random splits of the sample. 

Because of its wide applicability and its 
essential simplicity, the method belongs perhaps 
to the class of "jackknife" methods. We expect 
that these first applications to analytical 
statistics will be followed by many others, prob- 
ably with modifications; we suggest some [Kish 
and Frankel, 1968]. That article contains results 
of several investigations we made to check the 
soundness of BRR, all very reassuring. Sections 
10 and 11 contain some basic theoretical found- 
ation and further reference. 

We are aware of course that our methods, as 
it often happens in statistics, have run beyond 
rigorous mathematical foundations in places, 
especially in part D above. Our methods and our 
investigations have been stimulated by the needs 
of empirical research using regressions and other 
analytical statistics on data from complex samples. 
These methods are preferable to the available 
alternatives listed in section 2, and specifically 
to the universal usage of standard error estimates 
based on simple random assumption [Kish, 1957]. 

Repeated replications were first used for 
standard errors by the U. S. Census Bureau, as 

noted by Deming [1956]. At the Survey Research 
Center we soon began a series of computations for 
regression coefficients, and other analytical 



statistics, also introducing balancing into the 
repetitions. Our early programs were written by 
Irene Hess, Edwin Dean, and Kathleen Goode; since 
1964 John Sonquist and K. S. Srikantan have con- 
tributed. Meanwhile, Margaret Gurney designed 
balanced replications for the U. S.,Census Bureau 
[1963]. Walt R. Simmons used the method for 
surveys of the National Center for Health Stat- 
istics, and interested P. J. McCarthy, who devel- 
oped an optimal method of balancing [1966, 1968]. 
A more efficient, flexible,and widely applicable 
set of programs for IBM 360 systems has been 
developed in 1968 by Martin Frankel and Neal 
Van Eck of the Survey Research Center, together 
with Carl Bixby and David Seigle of Interface,Inc. 
Ann Arbor; this work is supported by a grant from 
the National Center for Health Statistics. 

4. Summary of empirical results 

The results taken together constitute 
reassuring rewards for patient and difficult work 
since our first efforts in 1957, but especially 
between 1964 and 1967, when we completed the five 
projects described in section 5 -9. These gave us 
some security for the following tentative con- 
clusions. They also encouraged us to further 
research with better computing programs we 
completed in 1968. 

First, the results reassure researchers who 
have been using data from our national samples 
for multivariate analyses: the standard errors 

computed by machine programs, based on srs 
assumptions, were not gross underestimates. 
Before these results one could reasonably fear 
that the design effects could be as high as they 
were for the standard errors of means,_ ór con- 
ceivably even higher. (Effects of d = 1.40 

on the standard errors of means were not rare.) 
For example, the average effect on standard errors 
was 1.17 for means, but only 1.06 for the regres- 
sion coefficients from data described in 
section 5. 

Second, design effects on standard errors of 

regression coefficients were shown to be estimable 

and of appreciable magnitudes. For example, an 

increase of 1.061= 1.12 in the variance corre- 

sponds to a similar decrease in the effective size 

of the sample. Ignoring it means that instead of 
error rates of 1.96 or 2.58 one is using levels 

of 1.85 or 2.43; hence, instead of five or one 

percent errors, one has 6.5 or 1.5 percent. Fur- 

thermore, the low effects of 1.06 and 1.10 were 

found in widespread samples; we expect greater 
effects in samples with greater concentrations. 

These two conclusions contradict extreme 

positions. One extreme is the widespread wish- 

ful thinking that the design effects on the 

standard errors of analytical statistics, which 

had been generally neglected, will prove to be 

negligible. On the other extreme lurks the fear 

that those effects may eventually turn out to be 

as large as the large effects often found for the 
standard error of means; or perhaps larger. 
Though these extremes will remain mathematically 
possible for future data, their likelihood is 

greatly reduced by the consistency of the large 
and varied body of empirical data here exhibited. 
They show design effects consistently between the 

two extremes, somewhat closer to the lower. 
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Since the design effect for means is more avail- 
able, this empirical rule should be more helpful 
than assuming either extreme. Furthermore, the 
design effects for analytical statistics seem to 
resemble those for differences between pairs of 
means, also more available. For example, the 
mean factor of 1.06 for regression coefficients 
in section 5 resembles the factor of 1.07 found 
for differences of means for similar data. 

Third, the similarity of effects on regres- 
sion coefficients and on differences between 
means can be used. The data seem to show that, 
as we conjectured, the effects in regression tend 
to resemble the average ratios we can find more 
easily for differences of means for similar data. 
Standard errors for means are easier to compute, 
and we have considerable amounts of results for 
them. We can lean gently on those results to 
buttress our meager grounds for inference for 
regression coefficients and other analytical 
statistics. 
Fourth, the factor ialiTE seemed reasonably 
stable for all the coefficients in these data, 
across variables and equations. This is useful, 
because: a) individual standard errors for each 
variable in each equation would be expensive to 
compute; b) they would be subject to high 
variability; c) they would be difficult to pre- 
sent in the results [Kish, 1965, 14.1 - 14.2]. 
Instead for example, for the results in section 5, 
we rely on the factor 1.06 to adjust srs estimates 
of standard errors; or on 1.062 1.12 to obtain 
"effective" sample sizes. Such averaging of 
standard errors is hazardous; of course, we in- 
vestigated other methods of averaging computed 
standard errors; see sections 7 and 9. 

Fifth, the design effect should not be 
assumed to be either small or uniform for all 
survey results. Our conjectures are to the con- 
trary. When design effects are high for means 
they tend to be high for differences of means; 
this tendency is similar for other analytical 
statistics. The results in section 7 conform 
well to tnese conjectures. Differences are also 
found for different statistics from the same data. 
For example, simple correlations, and partial 
coefficients may have different effects than the 
regression coefficients. 

We hope to deepen our understanding of the 
sources and magnitudes of these effects with re- 
search, empirical and theoretical, by others and 
by us. Our present phase is reminiscent of the 
emergence about 20 years ago of empirical results 
about design effects on means and aggregates. 

5 Regression coefficients for a set of 
economic variables. 

These computations, completed in 1964, were 
the first large scale set of results on regression 

coefficients. Standard errors were computed for 
20 regression equations in which 7 predictor 
variables appear in different combinations of 1, 
2, 3, or 4 at a time (see Table 5.1). They form 

the core of a study on Private Pensions and 
Individual Savings by Katona [1965, see 

especially Table 30]. 
The data represent 1,853 interviews ob- 

tained from members of the "crucial group," 
defined as "Complete families (husband and wife 



living together) with the head in the labor force 
and aged 35 to 64 with a family income of three 
thousand dollars or more." [Katona, 1965, p.8]. 

They constitute a subclass from a sample of 4,700 

family units, selected with equal probability on 
three national surveys conducted in June 1962, 
January 1963, and June 1963. They came from the 

national sample of 74 primary sampling areas: the 
12 largest metropolitan areas (self- representing), 

plus 62 other primary areas (other- representing) 

[Kish and Hess, 1965]. The latter were 
"collapsed" into 31 strata; from the former the 
primary units (tracts and blocks) were "combined" 
into 16 strata. Thus 47 strata of roughly equal 
size were created for the computations, in close 
accord with the sample design. In each of the 47 

strata a pair of replicates formed the basis for 
the BRR computations with 48 repetitions. 

The mean value of the effects ITWET for 60 
regression coefficient was 1.0616. The separate 

values are shown in Table 5.1. When should we 

use the separate values and when the overall mean? 
Analysis of variance shows that the small differ- 

ences between predictors are significant, but 

those between equations are not. We suggest a 

useful strategy: compute srs standard error and 

multiply by the deff for the predictor averaged 
over all equations. 

Table 5.1 Effects for Standard Errore of 
7 Predictors in 20 Regression 
Equations 

Equa- 
tion 1 2 3 4 5 6 7 Mean 

1 1.002 1.002 

2 1.030 1.006 1.018 

3 1.023 1.115 1.062 1.067 

4 1.172 1.011 1.016 1.066 

5 1.026 1.027 0.956 1.003 

6 1.090 0.970 1.194 1.085 
7 1.017 1.078 1.071 0.892 1.015 

8 1.070 0.978 0.929 1.149 1.032 

9 1.057 1.057 

10 1.141 1.048 1.095 

11 1.217 0.939 1.165 1.107 

12 0.997 1.109 0.966 1.024 
13 1.150 1.004 1.415 1.190 

14 1.083 1.077 0.986 1.049 

15 1.217 0.939 1.165 1.107 

16 1.109 1.052 1.096 0.971 1.057 

17 1.178 1.001 1.000 1.060 

18 1.186 1.068 1.015 1.165 1.109 

19 0.925 0.942 0.959 1.122 0.987 

20 1.258 0.985 1.029 1.082 1.089 

Mean 1.105 1.020 1.001 1.116 0.991 1.073 1.075 1.062 

6. Regression of voting on 4 attitude scales. 

These data derive from 1,111 voters inter- 

viewed in October and again in November of 1964, 
in as many households selected in the 74 primary 
areas of the SRC national sample. A regression 
equation related the party receiving the vote of 

the respondent (as he stated it in the November 
interview) to 4 predictors, each of these an 
attitude scale of 9 points obtained in the 

October interviews. The sample design and the 

construction of 48 repetitions based on 47 
computing strata were similar to those described 
in section 5. 
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Mean values of the effects /IWTT on standard 
errors, in Table 6.1, are based on the averages 
of the BRR values obtained from 4)2 and 
(bi 4)2; the deviations of the half sample and 
its complement from the overall statistic t. We 
also computed the BRR values of (b.i- 14)2/4; and 
the effects from these are given in parentheses. 
These values are always lower, but only by a 
factor of 0.999 to 0.995. These small differences 
are reassuring and meaningful, as will be noted 
in section 11. 

Table 6.1 Effects Standard Errors of 
Regression Statistics 

mean bi r 

1 1.215 (1.214) 0.958 (0.954) 1.013 (1.011) 0.935 (0.931) 
2 1.018 (1.017) 1.069 (1.065) 1.104 (1.102) 1.089 (1.086) 
3 1.168 (1.167) 1.136 (1.133) 1.298 (1.296) 1.198 (1.196) 

4 1.021 (1.020) 0.897 (0.892) 0.970 (0.968) 0.941 (0.936) 

Y1.108 (1.107) ... ... 

Mean 1.106 (1.105) 1.015 (1.011) 1.096 (1.094) 1.041 (1.037) 

The mean effect 1.106 for standard errors of 
the 5 means is not surprising, though perhaps 
somewhat on the low side; 1.2 or 1.3 would be 
more accord with other data of this type. This 
study, the smallest of the 5 we present, may be 
the best place to remind ourselves of the vari- 
ability of our data; the coefficient of variation 
of these values is probably over 10 percent, 
1/2(47). 

The mean effect for the multiple regression 
coefficient is 1.015, and this may also be on the 
low side. The mean effect is 1.096 for the first 
order correlations of the 4 predictors with the 
predictand, and 1.041 for the partial coefficients. 
The effect was 1.143 (1.138) for the multiple 
correlation coefficient, and 1.150 (1.146) for the 
adjusted coefficient. 

There are 6 first order correlation coef- 
ficients between the 4 predictors, and the mean 
of the effects was 1.221 (1.219). (The 6 values 
were 1.212, 1.030, 1.320, 1.111, 1.265, 1.390.) 
This value is greater than we expected, and 
greater than the 1.106 for the means. We have no 
explanation for this case, and it does not hold in 
other projects. 

To investigate the possible effects of non - 
normality we repeated these computations after 
making a Fisher's z transformation of the coef- 
ficients. The differences for all the separate 
effects were reassuringly small, and the mean 
effect was the same to 3 decimal points. 

We may add here that in our first set of BRR 
computations in 1957, for regression coefficients 
for an equation of political attitudes, we found 
a low mean effect, similar to the 1.015 reported 
here [Stokes, 1958]. 

7. 16 Regressions of physiological measurements 
of the NCHS 

For 3,091 males in a national health exam- 
ination survey, age, height, and weight were used 
as predictors of 16 physiological predictand 
variables, each in a separate equation. The 



sample came from clusters of four per segment, 
clustered in 42 primary areas [Simmons and 
Baird, 1968]. 

The average effect on the standard 
errors of means, correlations and regression 
coefficients is given in Table 7.1, col. (2). 

Individual values of riretirir for means, regression 
coefficients and multiple correlation coef- 
ficients are given in Table 7.2. These effects 
are larger than in our other results, but do not 
contradict them; on the contrary, this is in line 
with our conjectures: we expected large effects 
because of the large primary clusters, and be- 
cause the effects on the means were large. We 
believe that the large effects here are not due 
to the nature of the variables, but to the large 
clusters of the sample, and possibly to the 

clustering of measurement errors by the survey 
teams. 

Table 7.1 Effects of Design in 16 Regressions 

from 3 Predictors. 

Each entry in (2) and (3) is the mean of a number 

Statistical Type (1) (2) (3) (4) 

=(2) +(3) 

Ratio Means 18 1.7998 1.7549 1.0256 

Simple Correlations 51 1.2616 1.2802 0.9855 

Partial Correlations 48 1.3995 1.3487 1.0377 

Multiple R 16 1.4653 1.4217 1.0307 

Regression Coefs. 48 1.2948 1.2668 1.0221 

Table 7.2 Effects, on Standard Errors of 

Means, Regression Statistics, and 
Multiple R's. 

Equation Means (Y1) b(X1) b(X2) b(X3) 
R. 1t. 

1 2.022 1.126 1.169 .89 1.214 

2 1.398 1.443 1.630 1.298 .942 

3 1.194 1.343 1.522 1.290 .816 

4 0.937 1.482 1.267 .986 1.298 

5 2.093 1.160 1.441 1.514 1.543 

6 1.371 1.359 1.246 1.607 1.866 

7 2.023 1.219 1.426 1.564 1.701 
8 1.893 1.281 1.233 1.309 1.666 

9 1.885 1.361 1.465 1.110 2.036 

10 1.404 1.330 1.045 1.486 1.640 

11 2.470 1.550 1.374 1.323 1.836 

12 1.523 0.935 1.270 1.316 1.496 

13 1.833 1.178 0.857 1.147 1.175 

14 2.227 1.391 1.220 1.328 2.012 

15 1.204 1.453 1.355 1.165 .942 

16 3.319 1.106 1.251 1.325 1.261 

Mean 1.800 1.295 1.298 1.2914 1.465 
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These computations gave us an opportunity to 
investigate an issue related to the estimation 
scheme employed by the National Center for Health 
Statistics, which uses 12 age -sex categories for 
post- stratification. Since the post- stratific- 
ation scheme is a function of the sample, the 
estimate based on the half -samples (i.e., the 
bi and bpi's) should be computed using post - 
stratification weights based on the particular 
half or complement half sample. Following this 
procedure we computed estimates of variance 
using a set of 16 half samples with no comple- 
ments; values of /TWEE for these results given 
in col. (2). Because the reweighting of each 
half sample is costly, we also computed the less 
costly variance estimates with weights assigned 
in the post -stratification of the total sample. 
Column (3) presents the average /111WEF computed 
this way; for these estimates we used 24 repli- 
cations with complementary half samples. 
Column (4) gives the ratio of the two methods; 
the simpler method (no reweighting of half - 
samples) does in general appear to underestimate 
the design effect. However, this degree of 
underestimation may perhaps be tolerated to 
reduce the cost of computing variances. Further- 
more, to the extent that the factor of under- 
estimation is found to be stable at 1.02 or 1.03, 
it may perhaps be used to adjust the cheaper 
estimate. 

Analysis of variance of the 16 3 values in 
Table 7.2 of VITWEE for the 48 regression coef- 
ficients showed no significance either for the 3 
predictors or for the 16 equations. Hence for 
the standard error of an individual regression 
coefficient the best strategy may be to use 1.29 
times the srs estimate of the standard error. 

8. Dummy variables In regression equations 

The data represents the sum of three national 
households samples conducted in August 1962, 

November 1962, and November 1963. Over 1300 

interviews from each survey yielded a total of 

3990, from the national sample of 74 primary areas 
of the Survey Research Center, similar to that in 

section 5. The samples are described by Lansing 

and Mueller in The Geographic Mobility of Labor 

[1967, pp 8 -9, 349 -358]. Again 48 balanced 
repetitions were used for 47 strata. 

The multivariate analysis used a technique 
of "dummy variables" to represent nonmetric and 

nonscaleable predictors, and to overcome 
nonlinearity in other predictors. Essentially 

each category of every variable in the regression 
equation receives a value of 1 for members of the 
category, and 0 for nonmembers [Suits, 1957]. A 
standard program for the IBM 7090 (now rewritten 

for IBM 360) computed estimates of regression 
coefficients and their standard errors, as well 

as related statistics [Lansing and Mueller, 1967, 

pp 47 -53, 397 -417]. 
The program's formulas for standard errors 

were based, as usual, on srs assumptions. The 

aims of our BRR computations were to compute a 

set of standard errors which followed closely the 
complexities of the design, and especially to 
compute ratios of /TWEE of the former to the 
latter. These computations were confined, due to 

the limitations of the program and the budget, to 



6 regression equations, with -a total of 64 pre- 
dictor categories. See Tables 8.1. The mean 
value of the 64 values of VaJT is 1.10. There 
seems to be a fair amount of variation to be 
investigated later. 

Table 8.1 Effects neR on Standard Errors of Regression 
Coefficient for Selected Predictor Classes in 
6 "Dummy Variable" Regression Equations. 

Selected Classes of Rear 
Predictor Variables al a2 bl b2 cl c2 

College, Grad. or some 1.12 1.19 0.86 0.88 1.14 1.20 
High School, Grad or some 0.86 0.80 1.02 0.75 
Professional or technical 1.37 1.54 1.15 1.26 
Other white collar 1.29 1.14 1.32 0.92 
Blue collar 0.93 0.95 1.14 1.02 1.30 0.90 
Family income > $10,000 1.10 1.44 0.98 0.86 
Family income < $3,000 0.76 0.86 1.14 1.37 
Financial reserves > $1,000 1.29 1.08 ... ... ... ... 

Financial reserves none 0.97 0.81 ... 

Unemployment, usual 1.06 1.37 1.28 0.97 
Negro 0.80 0.60 0.93 0.82 0.93 0.80 
Home, own or buying 1.03 1.37 0.86 0.71 1.22 1.10 
Relatives, all live away 2.06 1.30 1.47 1.26 
Relatives, most live away 1.15 1.20 1.07 1.04 
Friends, all live away 
Friends, most live away 

1.127 1.118 1.152 1.011 1.145 1.00. 

To conserve computational costs we selected 16 predictor classes 
from 9 predictor variables, as they appeared to be relevant. The 
6 selected regressions equations are defined by their predictand 
variables, and by the subclasses on which they are based, as 

follows: 
a) Predictand: Moved in period of one year after the study 

Subclass 1: Age under 30, n -306 
2: Age 35 and over, n 927 

b) Subclass of sample: age under 35, n -979 
1) Predictand: Mobility last five years 
2) Predictand: Plans to move in next year 

c) Subclass of sample: Age 35 and over, n 2991 
1) Predictand: Mobility last five years 
2) Predictand: Plans to move in next year 

9. Statistics from multiple classification 
analysis (MCA) 

A sample of 2214 family heads were inter- 
viewed in January and February 1965 in the 74 
primary areas of the Center's national sample. 
One method for multivariate analysis consisted of 
an MCA equation to relate a "receptivity index" 
to 6 predictor variables comprising altogether 43 
predictor classes; see Productive Americans by 
Morgan, Sirageldin, and Baerwaldt[1966, pp 360- 
378, 208 -233]. 

MCA is a multivariate technique used for 
nonmetric data and to circumvent nonlinearity of 
the variables. Through iteration it obtains a 
least square solution for an equation relating 
the predictand variable to a linear expression of 
all the predictor classes. It is being utilized 
increasingly in survey research, where polytom- 
ized variables are most common. [Andrews, Morgan, 

Sonquist, 1967; Hess and Pillai, 1960; Kempthorne, 
1952; Hill, 1959; Blau and Duncan, 1967, pp 128- 
140]. 

The wide utility and utilization of the 
model was the prime reason for our interest in 

the method. It also offered a new challenge for 
BRR techniques, because analytical expressions 

are lacking for standard errors of MCA coeffi- 
cients even under srs assumptions. 
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Iterative methods for this large matrix 
were costly for our programs in 1966; our 1968 
program will facilitate future computations. 
Hence we confined our computations to 12 parti- 
ally balanced repetitions of half sample estim- 
ates of standard errors based on the complex 
sample design. We also wanted to compare these 

estimates in order to compute design effects; 
to do this we also computed 12 repetitions based 
on simple random splits of the sample. 

One set of outputs of MCA analysis is a set 
of adjusted deviations; deviations for the 
predictand variable between the overall mean and 
the mean for each predictor class, after adjust- 
ment for all other variables in the equation. 
This deviation can also be compared to the raw 
unadjusted deviation for the same predictor class, 
thus noting the combined effect of the other 
variables. 

For each variable MCA also yields a beta 
coefficient that indicates the relative explan- 
atory value of each predictor variable; this is 
related to the adjusted means for all classes of 
that variable. Each beta may be compared to an 
eta for the same variable; its square is the 
correlation ratio which indicates the proportion 
of the total variance attributable to the unad- 
justed means of all classes of the variable. 

Table 9.1 presents the computed standard 
errors for the eta and beta coefficients. The 
latter are important and seem rather stable_in 
the neighborhood of 0.022. Both the complex and 
the simple random computations were based on 12 
repetitions each. The latter were necessary 
because formulas are not available. The small 
number of repetitions we could afford makes 
these values unreliable; from the 12 strata, we 
expect roughly a coefficient of variation of 
1/2(12) = 0.2 for the computed values. The mean 
values are = 1.222 for the 6 values of 
ste(beta) and 1.347 for the corresponding 
ste(eta) values. We expect to check these values 
which appear to be higher than we expected. 

Table 9.1 Standard Errors for eta and beta 

Coefficients in Multiple 
Classification Analysis. Predictand 
Is A Receptivity Index. 

Predictor Variable eta 
ste 
(eta) 

beta 
ste 

(beta) 

Education of Head .5032 .0186 .1993 .0223 
Age of Head .4098 .0245 .1233 .0215 
Total Family Income .5676 .0165 .3309 .0258 
Social Participation .4296 .0258 .1586 .0232 
Achievement Orient. .3476 .0185 .1201 .0220 
Sex & Marital Status .2884 .0284 .0970 .0209 



For the standard errors of the deviations a 

generalized table was deemed useful because of 

its simplicity, and because of the high vari- 

ability of the 43 individual computed values. we 

conjectured that ste(d) = a /4T, where a is a 

constant and n the size of the predictor class, 

may be a fair approximation. For the 43 pairs of 

values of ste(d) and n we fitted a least square 

line to a log ste(d) ;-log a -0.5 log n. We thus 

obtained a value of a 1.815 for the adjusted 

deviations. Similar computations for the unad- 

justed deviations gave a' = 2.441. The general- 

ized table 9.2 for standard errors of deviations 

is given for relevant values of subclass size n. 

The hyperbola a/AT appears to fit well the values 

of ste(d) plotted against fn; similarly for the 

hyperbola 

Table 9.2 Average Standard Errors of Deviations, Adjusted 

and Unadjusted, As Fitted to Two Curves 

n 25 50 75 100 150 200 300 400 500 600 1640 

Adjusted 
1.815 .363 .257 .210 .182 .148 .128 .105 .091 .081 .074 .045 

Unadjusted 
2.441/T .488 .345 .282 .244 .199 .173 .141 .122 .109 .100 .060 

It is likely that with more data, precision, 
and research better approximations will be found. 
Although we could not discern distinct patterns 

for diverse predictors, they probably exist. 

Furthermore, the size of the sample should depend 

not only on n but also on other parameters which 
allow the design effect to vary with n, rather 
than to fix it with the constant a. 

For our results the mean design effect was 

small compared to errors in measuring it; system- 

atic variations were not detected and can be neg- 
lected. For each of the 43 deviations we took 

the ratio of the two computed values: the actual 

clustered to the srs values (each value the mean 

of 12 repetitions). The mean of these 
ratios was 1.105 for the unadjusted and 1.025 for 

the adjusted deviations. 
To investigate sources of variability we 

also fitted least square lines logarithmically to 

ste(d) = to estimate values of a and a' for 

srs estimates of ste(d), as described above for 

complex estimates. The estimates of a and a' are 

compared in Table 9.3. That table also has 

values of a reasonable and simple model for the 

curve a for unadjusted deviations this is 

conjectured to be and for the unadjusted 

deviations mss/ n. The comparison with the 

computed values is reasonable. We may expect a 

reduction from the model which, using s from the 

entire sample, assumes random grouping to the 

mean srs values for meaningful groups. 
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Table 9.3 Values of the Constants (a) for 
Three Assumptions for the Curves 

for models for rep_ications 

srs complex 

Adjusted a s/I 1.769 1.725 1.815 

Unadjusted a' s/ = 2.387 2.310 2.441 

10. Properties of BRR estimates 

BRR techniques for estimating variances 
yield useful approximations for a wide variety 
of statistics. We present below strong just- 
ifications, we believe, for their use. We make 
some simplifying assumptions necessitated by the 
present state of the theory. A few are made 
here merely to keep the exposition brief. Some 
of these will be weakened in a fuller exposition 
that will also present some elaboration, and 
especially the results of investigations into 

reliability of the technique [Rish and Frankel, 
1968]. 

For simplicity we assume here two primary 
selections per stratum, selected entirely 
independently, hence with replacement. Within 
each of the H strata the two primary selections 
are replicates of the same selection process for 
representing the stratum. Then from the sample 
S we select at random one replicate from each 
stratum to constitute the replication Hi. The 
other replicates from each stratum constitute 
the associated complement Ci. Note that Hi 
Ci constitute two replications of the same 
selection process. Furthermore S also represents 
the same selection process but doubled in every 
respect. 

The sample estimating function f applied to 
the entire sample yields the estimate f(S). 
The same function applied to replication Hi 
yields bi = applied to Ci it yields 

= f(Ci). Our goal here is to estimate Var(b) 
by using bi and and to improve this estimate 
by repetitions of the process to constitute bi 
and bi; etc. These may be viewed as samples 
from the 2H -1 replications that may be drawn 
from S. 

It may help the reader if he can refer to 
a list of terms: 

B is the population value being estimated, and 
we neglect differences from some true 
values due to measurement errors, 

nonresponse, etc. 

is the statistic used by the researcher for 
estimating B, and variance Var(b) 
needs to be estimated; we neglect here 
the possible existence of some better 
estimator b *. 



(bi /2 is the mean of a replication and 

its complement. 

/k and b/(k) =Ekbi /k are the means of k 

replications and their complements, and 

/2 = The 

be based on all of the 2H -1 possible 

replications. 

b(k *), *), and denote the above based 
on a balanced repeated replication. 

The "linear case ", when the estimation 
function is linear in the replicate values, 
has notable simplicities. In the linear case 

b = bi, and thus b(k) But this does not 

hold for statistics in general which are non- 
linear, in which our interests lie. We are 
chiefly interested in making estimates about 
Var(t) from averages of var(bi) for the non- 

linear We also want to relate Var(b(k) 

and Var(b(k ) to Var(b). 

We shall denote by E(bi) the expectation 

of = f(H1) for a specific replication Hi 

over all possible samples with a specified 
sample design combining a selection process and 
estimation function. Because of symmetries we 
have equal expectation for all i and and 
their means: 

E(bi) = = ) = E(b) - E(b(k)) 

= E(b(k = E(b(t)). (10.1) 

However, E(b) E(b(t) ) etc. in general. 
Furthermore 

Var(b ) = EL = E(bi -bi)2 

= )2, an d (10.2) 

Var(b = Var(b ) for all i, (10.3) 

The expression /4Aestimates the 
variance of Although b for the nonlinear 
case, the difference is probably often slight. 
However, the estimate is extremely unstable and 
we must obtain more precision with repetitions. 
If we repeat the process k times we can get the 
mean variance estimate = E(bi.4!)2 /4k. 
Since the variance of all replications has the 
same expectation, we have 

E Var(bi). (10.4) 

Furthermore 

Var(b(k)) k -2 [E Var(bi) + E Cov(bi,bj)] 
i0j 

[k Var(bi) + k(k-1) Var(bi)] 
j 

Var(bi) [(1-Pb 
i ,b j 

)(k-1)/k2) (10.5) 
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where 
b 

denotes the correlation between 
j 

and bj values. For the linear case 
b 

= 1, 
j 

because all are equal. In our investigations 
we have found for orthogonally balanced replic- 
ations that 

b 
> 0.98, when the are 

i, j 

regression coefficients. 
For the linear case McCarthy [1966, 1968], 

has shown that orthogonally balanced patterns of 
repeated replication produce estimates of the 
variance equal to the estimate that would be 
produced much more laboriously from all 2H pos- 
sible replications. In our investigations on 
nonlinear statistics we used his orthogonal 
balancing because we believe it to be useful. 
We have made investigations to relate estimates 

* 
of Var(bi) and Var(b 

k 
) to Var(b)-, and Si and 

b(k *) to The empirical investigations were 
reassuring and will be presented later [Kish and 
Frankel, 1968]. In summary, our estimates of 

Var(b.) overestimate Var(b(k)), and is 

generally very close to b. 
_We note here a justification for the use of 

Var(bi) to estimate Var b) based on design 
effects. The half -samples Hi and Ci are con- 
stituted to preserve the full complexity of the 
selection process of the entire sample S. The 
estimation function f is the same fort as for 
bi and 

From Deff - Deff (b) we have 

Var(b) Var(bi) 
and 

Var(b) 

ab Var(bi) 

i i 

and are the variances of and under 
b 
i 

the assumption that S is a simple random sample 
of elements with replacement. 

From nonreplicated methods we estimated 
and used their ratio as an estimate of 

i 

the ratio of Var(b) to Var(bi). For the regres- 
sion coefficient described in 4 -9 we find that 
the mean value of this ratio across different 
regression coefficients was 1.000 with standard 
error (among statistics) of less than .01. 

11. Approximations for var(b(k)) and estimates 
of MSE from BRR 

When dealing with estimation functions for 
linear cases we can take advantage [McCarthy 
1966, 1968] of the identity between b and Si to 
use the simpler computational form. 

= /k = /k 

bi)2 /4k, (11.1) 

since bi and (bi=b) = (bi b). Here k refers 
to the number of computations needed to obtain 
BRR. Only k computations are needed to obtain 
the bi values, because the values yield no 



new information. However, for nonlinear cases 
the strict equality does not hold and computing 
both bi and does yield more information and 
improve the variance estimate. Note that 

(bi b)2 = (b_1 + b)2 (bi-bi)2 

+ b)2 + 2(bi- 

= (bi)2/4 + + (b -b/), 

if we remember 

= (bi /2 

averaging over 

that 

and define ei 

k computations 

2(b), where 
= . Then 

we have 

)- kEe + kEe(b-b), and 

vark(bi) = - (11.2) 

In the linear case both terms vanish. In 

our investigations the first term is always very 
small. Although the second terms are not large, 
they raise the question of strategy for averaging 
the two sets of variances: 

[E(bi b)2+ 4)2]/2k Eei/k. 
i i 

(11.3) 

If b estimates B and if its bias is 
inversely related to the number of primary 
selections m for a specified design, then for 
some constant a: 

B -E(b) = a /2m and B -E(bi) = B a/m 

and [E6,-b)]2 (a /2m)2 = Bias26). 

Since E(kEe2) - 4)2] > [E(bi 4)]2, 

the use of [E(bib)2 + b)2] /2k will yield a 

conservative estimate of the mean square error 
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